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We study time-periodic forcing of spatially extended patterns near a Turing-Hopf bifurcation point. A
symmetry-based normal form analysis yields several predictions, including that �i� weak forcing near the
intrinsic Hopf frequency enhances or suppresses the Turing amplitude by an amount that scales quadratically
with the forcing strength, and �ii� the strongest effect is seen for forcing that is detuned from the Hopf
frequency. To apply our results to specific models, we perform a perturbation analysis on general two-
component reaction-diffusion systems, which reveals whether the forcing suppresses or enhances the spatial
pattern. For the suppressing case, our results are consistent with features of previous experiments on the
chlorine dioxide-iodine-malonic acid chemical reaction. However, we also find examples of the enhancing
case, which has not yet been observed in experiment. Numerical simulations verify the predicted dependence
on the forcing parameters.
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I. INTRODUCTION

Turing patterns, originally conjectured as the basis for
biological morphogenesis �1�, arise in such diverse fields as
ecology, materials science, and astrophysics �2–4�. Originat-
ing through a symmetry-breaking bifurcation of a homog-
enous steady state destabilized by diffusion, Turing patterns
were first produced in experiment in the chlorite-iodide-
malonic acid �CIMA� chemical reaction �5�. The CIMA re-
action and its close variant, the chlorine dioxide-iodine-
malonic acid �CDIMA� reaction, have rich pattern forming
behavior, producing spots, stripes, rhombs, hexagons, and
superlattices �6–9�.

Many systems that form Turing-type patterns can also dis-
play a Hopf bifurcation to time-periodic solutions, and the
interaction of these instabilities has been implicated in a va-
riety of natural phenomena. Within the realm of biological
and physical models, these phenomena include: chaos in
predator-prey systems �10�; slow oscillations of coherent
brain activity in the cerebral cortex �11�; propagating and
standing fronts in arrays of resistively coupled nonlinear LC
oscillators �12�; vortex glasses, chaos, localized structures,
and mosaic patterns in optical parametric oscillators �13�;
and various complex spatiotemporal behaviors in semicon-
ductor charge transport �14,15�.

However, the Turing-Hopf interaction has arguably re-
ceived the most focus vis-a-vis chemical experiments.
Chemical phenomena attributed to the interaction of Turing
and Hopf modes include: one-dimensional “spirals” in the
CIMA reaction �16�; localized oscillations in the CDIMA
reaction �17�; attenuation of oscillations and increased spatial
coherence in the CDIMA reaction with random external spa-
tiotemporal forcing �18,19�; and oscillatory Turing patterns,
oscillons, and jumping and bubble waves in the Belousov-
Zhabotisnky aerosol OT �BZ-AOT� reaction �20–22�. Foun-
dational theoretical investigations �23–25� have studied the
interaction both in canonical chemical models such as the
Lengyel-Epstein model �26� and the Brusselator �27�, and

from a model-independent, symmetry-based perspective.
The discovery that the CDIMA reaction is photosensitive

�28� has allowed an investigation of Turing pattern control.
Spatial, temporal, and spatiotemporal forcing have been
shown to induce a transition between patterns �29,30�, to
introduce new localized �31� and complex �32� patterns, or
simply to suppress patterns �33�. Turing systems that both
contain a Hopf instability and are susceptible to external
forcing pose an intriguing challenge. To control the system in
a prescribed way, one must understand the delicate interplay
of the two instabilities with the forcing.

In this paper, we study time-periodic forcing of spatially
extended systems near a codimension-two Turing-Hopf bi-
furcation point. We give special attention to the forcing’s
effect on the Turing pattern. The forcing drives the Hopf
mode, which in turn enhances or suppresses the Turing pat-
tern modes to which it is coupled. Our results are threefold.
First, in Sec. II we study weakly forced Turing-Hopf bifur-
cations from a symmetry-based �model-independent� per-
spective. Our results augment the existing theoretical litera-
ture on the Turing-Hopf normal form �23–25�. In the forced
normal form, of special interest is the coefficient of the term
that couples the Hopf mode to the Turing mode, whose sign
dictates whether the forcing enhances or suppresses Turing
patterns. We predict the dependence of the solutions on forc-
ing amplitude and frequency and, as an example, relate our
results to an experiment on the forced CDIMA system. Then,
in Sec. III, we begin with a generic two-component reaction-
diffusion system and use perturbation theory to calculate nor-
mal form coefficients. The result of the calculation applies to
specific two-component systems such as the Lengyel-Epstein
model, the Brusselator, and so forth and determines, as a
function of the reaction kinetics, the qualitative effect of the
forcing. Though previous work on the CDIMA reaction and
Lengyel-Epstein model found only the suppressing effect
�33,34�, we find enhancement in other models. Finally, in
Sec. IV we verify some of our symmetry predictions via
numerical simulations.
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II. SYMMETRY ANALYSIS

Consider a spatially extended system with a spatially ho-
mogeneous base state �zero, without loss of generality� and a
codimension-two point in parameter space where steady, spa-
tially periodic �Turing� modes and a spatially homogenous,
time-periodic �Hopf� mode bifurcate simultaneously. For ex-
pository purposes, assume a simple stripe pattern. Close to
the bifurcation point, let

u = zT�t2�vTeiq·x + zH�t2�vHei�Ht + c.c. + ¯ , �1�

where u describes the system state �e.g., chemical concentra-
tions�, zT,H�t2� are the slowly varying amplitudes of the Tur-
ing and Hopf modes vT,H, t2 is a slow-time variable, q is the
wave vector of the pattern with wave number qc= �q� as de-
termined by linear stability theory, �H is the Hopf frequency,
and the dots represent damped modes. Assume time-periodic
forcing f�t� which we take without loss of generality to have
zero mean. For sufficiently weak forcing, the only frequency
component of f�t� entering the weakly nonlinear description
will be that closest to �H. Call this frequency � f and its
strength fH. Define the detuning �=� f −�H and assume
�=0 for now; later, we relax this assumption. Note that our
bifurcation scenario differs from that in �35� and related
works, which examine Turing bifurcations of an underlying
oscillatory state.

Equations for the slow-time evolution of zT,H must respect
the spatial symmetries of the underlying system �36�,
namely, translation by �x �zT→zTeiq·�x� and inversion
through the origin �zT→ z̄T�. Forcing breaks the temporal
symmetry of the problem, but it may be recast as a parameter
symmetry by incorporating the action of time translation by
�t on the forcing function �see, e.g., �37,38�� so that the full
symmetry is �zH , �fH��→ �zH , �fH��ei�H�t. The cubic amplitude
equations are

żT = �zT + sign�g1��zT�2zT + g2�zH�2zT, �2a�

żH = �fH� + �zH + g3�zH�2zH + g4�zT�2zH. �2b�

Here, � ,g1,2�R and � ,g3,4�C. We have performed a phase
shift and rescaling so that the forcing appears as �fH�; we also
scaled such that the self-interaction coefficient of zT
is sign�g1�= �1. Throughout the symmetry analysis,
assume a supercritical bifurcation to stripes, and thus set
sign�g1�=−1. Also assume that Re�g3��0 for a supercritical
Hopf bifurcation, so that the amplitude equations give a valid
weakly nonlinear description. For weak forcing, terms
smaller than O�fH� have no effect at leading order and are
ignored.

In the absence of forcing �fH=0� there are four solutions
to Eq. �1�: the trivial solution �zT,H=0�, a pure Hopf mode
�zT=0, zH�0�, a pure Turing mode �zT�0, zH=0�, and a
mixed mode �zT,H�0�; see, e.g., �25�. Space-time plots of
these solutions are shown in the top row of Fig. 1. To calcu-
late how weak forcing perturbs these solutions, perform a
regular perturbation expansion. Assume �fH� is O��� where
�	1 is a book-keeping parameter. Let

zT = zT
�0� + �zT

�1� + . . . , zH = zH
�0� + �zH

�1� + . . . . �3�

Substituting Eq. �3� into Eq. �2�, collecting terms in �, and
solving at each power leads to the following four perturbed
solutions, where we have retained only the leading terms and
reconstituted the expressions in �. We describe the solutions
to the perturbed cases below and provide space-time plots of
the solutions in the bottom row of Fig. 1.

(i) Perturbed trivial solution. Here zT=0, zH�−�fH� /�.
The physical solution �1� is an O�fH� spatially homogenous
oscillation with frequency �H.

(ii) Perturbed Hopf mode. In this case,

(b)(a) (c) (d)

(f)(e) (g) (h)

FIG. 1. Schematics in space �horizontal� time �vertical� of solutions to forced Turing-Hopf normal form �2�. Shading corresponds to the
underlying physical field u, e.g., the leading terms in Eq. �1�. �a�-�d� The �well-known� solutions for the unforced case, namely trivial, Hopf,
Turing, and mixed mode. �e�-�h� Corresponding leading-order perturbed solutions for weak forcing; see Sec. II.

CHAD M. TOPAZ AND ANNE J. CATLLÁ PHYSICAL REVIEW E 81, 026213 �2010�

026213-2



zT = 0, zH � Rei
t + �fH��A + Be2i
t� , �4a�

R��,g3� = �− Re���/Re�g3� , �4b�


��,g3� = Im��� + Im�g3�R2. �4c�

A and B are O�1� constants depending on coefficients in
Eq. �2�; their exact expressions are not key to our discussion
but may be obtained by substituting Eq. �4� into Eq. �2�. The
physical solution is an O�1� spatially homogeneous oscilla-
tion with frequency �H+
 superposed on O�fH� oscillations
with frequencies �H and �H+2
. The O�fH� correction is
consistent with results from �39–41�.

(iii) Perturbed Turing mode. We have

�zT� � ���1 +
g2�fH�2

2���̃�2
	 , �5a�

zH � −
�fH�
�̃

, �̃ = � + �g4. �5b�

The physical solution is an O�1� spatial pattern superposed
on an O�fH� spatially homogenous oscillation.

(iv) Perturbed mixed mode. In this case, zT and zH are
both time dependent,

�zT� � �� + g2R̃2 + �fH�C̃ cos�
̃t + �� , �6a�

zH � R̃ei
̃t + �fH��Ã + B̃e2i
̃t� , �6b�

where R̃=R��̃ , g̃3�, 
̃=
��̃ , g̃3�, and g̃3=g3+g2g4. The

O�1� constants Ã, B̃, C̃, and � are obtained by substitution.
The physical solution is an O�1� spatial pattern with O�fH�
breathing at frequency 
̃, superposed on oscillations similar
to case �ii�.

To explore mechanisms for suppressing and enhancing
Turing patterns, we consider further case �iii�. For compari-
son with experimental results, we now allow detuning from
�H ���0�, in which case �5� becomes

�zT� � ���1 +
g2�fH�2

2���̃ − i��2
	, zH � −

�fH�ei�t

�̃ − i�
. �7�

The forcing’s effect hinges on the sign of g2. If g2�0
�g2�0� the forcing suppresses �enhances� the Turing
pattern. If g2�0, weak forcing reduces the pattern
amplitude by a relative amount proportional to �fH�2.
Furthermore, since �zT��0, it follows that the domain of pat-
tern existence is shifted from ��0 �unforced case� to
��−g2�fH�2��̃− i��−2�0. If g2�0, the forcing enhances the
pattern and shifts the bifurcation in the opposite direction, so
that a pattern appears in the forced system for � values where
it would not exist in the unforced system. By optimizing �zT�
in Eq. �7� one sees the enhancement/suppression is strongest
for �opt=Im��̃��0 and decays away from this maximum.
Note that since �̃ depends linearly on � and �, the shift of
�opt away from zero is small if we are close to the
codimension-two point. A straightforward stability calcula-
tion shows the rate of suppression �i.e., the eigenvalue of the

perturbed Turing mode� is approximately −g2�fH�2�−1��̃
− i��−2.

The results above are qualitatively consistent with experi-
ments on the CDIMA chemical reaction �33� which consid-
ered time-periodic forcing applied to stable Turing patterns
�though the experimental patterns were not necessarily close
to onset�. First, forcing was observed to suppress the pattern,
corresponding to our case g2�0. Second, suppression was
strongest for � f ��H, in agreement with our explanation of
coupling to the Hopf mode as the �indirect� control mecha-
nism. Third, the rate of pattern suppression has a maximum
near �=0. Finally, the numerical simulations of �33�, taken
as a qualitative model of the experiment, showed that the
domain of Turing pattern existence was shifted, with a criti-
cal curve in the ��fH� ,�� plane having a minimum near
�=0, which follows directly from our expression for shifted
domain existence.

III. PERTURBATION ANALYSIS

To connect the symmetry results to models, consider a
general reaction-diffusion system for species u�x , t� and
v�x , t� which in the absence of forcing has a spatially ho-
mogenous state assumed without loss of generality to be
u=v=0. Similar to �42�, write the governing equations as

�t�u

v
	 = L�u

v
	 + R�u,v� + f�t� , �8a�

L 
 �a + �2 b

c d + K�2 	 , �8b�

where L is the linear operator, f�t� is spatially homogeneous
periodic forcing with zero mean, and R contains nonlinear
reaction terms and satisfies R�0,0�=0.

We first locate the codimension-two Turing-Hopf point
via linear stability analysis. Consider the usual Fourier-type
perturbations

u = �u

v
	et+iq·x, �9�

where the perturbation has wave number q= �q� and growth
rate . The eigenvalues 1,2�q� of the matrix

L�q� 
 �a − q2 b

c d − Kq2 	 , �10�

determine �in�stability. The conditions for the Hopf bifurca-
tion are Re 1,2�0�=0, Im 1�0�=−Im 2�0��0, which im-
ply that tr L�0�=0, det L�0��0. Therefore, d=−a and
a2+bc�0. The critical eigenvectors are vH= �b ,−a+ i�H�T

and its complex conjugate, where the Hopf frequency �H
satisfies �H

2 =−�a2+bc�. The conditions for a Turing bifurca-
tion are Re 1�qc��Re 2�qc�=0 where qc�0 is the critical
wave number. This condition implies that det L�qc�=0. We
also require all other modes to be damped at the bifurcation
point, so that Re 1,2�q��0 for q�0,qc. This is guaranteed
if det L�q� has a minimum at qc, from which it
follows that qc

2=a�K−1� / �2K�. The critical eigenvector is
vT= �−b ,a−qc

2�T.
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In summary, at the codimension-two point, the linear pa-
rameters in a ,b ,c ,d ,K in Eq. �8a� must satisfy

d = − a , �11a�

a2 + bc � 0, �11b�

a2�K + 1�2 + 4Kbc = 0, �11c�

bc � 0. �11d�

The critical Turing and Hopf eigenvectors are

vT = � − b

a − qc
2 	, vH = � a − qc

2

− a + i�H
	 , �12�

and additionally

�qc�2 = qc
2 =

ac�Kc − 1�
2Kc

, �13a�

�H
2 = − �ac

2 + bccc� = Kcqc
4. �13b�

To compute the coefficients in Eq. �2�, we perform a mul-
tiple time scales perturbation expansion for the case of weak
forcing. The calculation, though straightforward, is algebra-
ically tedious; we give some details in the Appendix.

As we are interested in the effect of forcing on Turing
patterns, we focus on the sign of g2, which we calculate for
two different models. Consider first the Lengyel-Epstein
model of the CDIMA reaction with forcing �26,33�,

u̇ = A − u − 4uv�1 + u2�−1 − f�t� + �2u , �14a�

v̇ = �B�u − uv�1 + u2�−1 + f�t�� + D�2v� , �14b�

where u and v represent the reacting chemical species, A, B,
and  are chemical parameters, and D is a diffusion constant.
Because there are three effective parameters affecting the
linear problem, namely A, B, and D, and because there are
two equalities �Eq. �11a� and �11c�� that the linear parameter
must satisfy in order to be at the codimension-two point, all
coefficients in Eq. �2� can be written as functions of A. Fig-
ure 2�a� shows g1,2�A�. For all values of A for which the
Turing pattern bifurcates supercritically �g1�0�, the coeffi-

cient g2�0, and thus forcing suppresses the pattern, in
agreement with only suppression having been observed in
CDIMA experiments. As a second example, consider the
forced Brusselator �43�,

u̇ = A − �B + 1�u + u2v + �2u + f�t� , �15a�

v̇ = Bu − u2v + D�2v , �15b�

for which all coefficients in Eq. �2� can again be written as
functions of A. As shown in Fig. 2�b�, when g1�0, there is
one subinterval in which g2�0 so that forcing can enhance
the spatial Turing pattern.

IV. NUMERICAL SIMULATIONS

To verify the symmetry-based and perturbation results of
Secs. II and III, we perform numerical simulations of the
Brusselator Eq. �15�. Simulations are carried out close to the
codimension-two point in a one-dimensional periodic do-
main of size 16�2� /qc. We compute spatial derivatives
pseudospectrally. The equations are evolved in real space
using the Matlab package’s built-in integrators �e.g.,
ODE45�.

Figure 3 shows an example of Turing pattern enhance-

(b)(a)

FIG. 2. Coefficients g1,2 in Eq. �2� as computed from two reaction-diffusion models, namely, the Lengyel-Epstein model Eq. �14� and
Brusselator Eq. �15�. At the Turing-Hopf point, the coefficients in Eq. �2� depend only on the parameter A in the governing equations. For
each case, we focus on the interval of A for which g1�0 so that the bifurcation to a Turing pattern is supercritical. �a� In the Lengyel-Epstein
equations, g1�0 for A� �7.0,13.8�. The coupling coefficient g2�0, so that forcing suppresses the spatial pattern. �b� In the Brusselator,
g1�0 for A� �0.68,3.26�. For A� �0.68,2.57�, g2�0 so that forcing suppresses the spatial pattern. For A� �2.57,3.26�, g2�0 so that
forcing actually enhances the spatial pattern.

FIG. 3. Simulation of the Brusselator Eq. �15�. Values of u are
indicated by shading in the x-t plane. The simulation begins with
f�t�=0 �no forcing�. A random initial condition �not shown� evolves
to a steady state Turing pattern by t�8000. At t=8000, we set
f�t�=0.01 cos��Ht�, which enhances the Turing pattern �as seen in
the sharper contrast between peaks and valleys�. The
chemical parameters are A=3, B=9.998, D�1.926 for which
�=−Re �=0.001 in Eq. �1�. At the codimension-two point,
qc�1.47 and �H=3.
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ment. In this example, the chemical parameters are
A=3, B=9.998, D�1.926 for which �=−Re �=0.001 in Eq.
�2��. At the codimension-two point, qc�1.47 and �H=3. A
random initial condition evolves to reach a steady Turing
pattern. At time t=8000, we set f�t�=0.01 cos��Ht�. The re-
sulting Turing pattern enhancement is visible as a sharper
contrast between peaks and valleys.

In further simulations we quantify the Turing pattern en-
hancement ET. To determine ET, we allow the forced system
to settle onto its attractor. We measure the time-averaged
amplitude of the critical Turing mode, and from this subtract
the corresponding value for the unforced case. Figure 4
shows ET as a function of forcing strength for simple har-
monic forcing and for three different sets of chemical param-
eters. For each data set, A=3 in Eq. �15� but we vary B and
D to achieve different distances from the codimension-two
point, holding �=−Re �. The quadratic scaling of Eq. �7�
holds over several decades, for sufficiently small forcing
relative to the distance from the codimension-two point.

Figure 5�a� shows ET vs � for the same three sets of
chemical parameters, with forcing strength F fixed for each
set. As predicted by Eq. �7�, there exists an optimal detuning
�opt that maximizes ET, and �opt→0 as the system param-
eters approach the codimension-two point. The inset, Fig.
5�b� verifies the functional dependence on � predicted by
Eq. �7�, namely, ET���=c1 / �c2+ ��−c3�2� for some constants
c1,2,3.

V. CONCLUSION

In this paper, we have studied the effect of time-periodic
forcing on interacting Turing and Hopf instabilities. Our nor-
mal form results suggest a pattern control mechanism for
spatially extended systems with these instabilities, including
chemical reaction-diffusion systems. Although the symmetry
analysis is performed for weak forcing and small-amplitude
patterns, it nonetheless agrees with features of the experi-
ments in �33�. Furthermore, we predict that the forcing may
result in spatial pattern enhancement. Thus far, only suppres-
sion has been observed in experiment, but nonetheless, we

have demonstrated pattern enhancement with our perturba-
tion analysis and numerical simulations. We hope that ex-
perimentalists might apply our results to look for the enhanc-
ing effect in other spatially extended systems with Turing
and Hopf instabilities.
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APPENDIX: PERTURBATION CALCULATION DETAILS

Here we provide some details of the multiple-scales per-
turbation calculation of Sec. III that leads to expressions for
the normal form coefficients in Eq. �2�. Begin with the gen-
eral two-component reaction-diffusion system Eq. �8a�. For
the weakly nonlinear analysis, it suffices to Taylor expand
the reaction terms R to cubic order in u ,v which yields

ut = �2u + au + bv + F2�u,v� + F3�u,v� + f1�t� ,

vt = K�2v + cu + dv + G2�u,v� + G3�u,v� + f2�t�
�A1a�

F2�u,v� = q11u
2 + q12uv + q13v

2,

G2�u,v� = q21u
2 + q22uv + q23v

2, �A1b�

F3�u,v� = c11u
3 + c12u

2v + c13uv2 + c14v
3,

G3�u,v� = c21u
3 + c22u

2v + c23uv2 + c24v
3. �A1c�

To study the slow-time evolution of the critical modes near
the codimension-two point specified by Eq. �11�, perform a
two-timing perturbation expansion. Let

FIG. 4. Scaling of Turing pattern enhancement ET as a function
of forcing strength for the Brusselator Eq. �15� with forcing
f�t�=F cos��Ht�. Symbols correspond to simulations while the lines
of slope 2 show the quadratic dependence on forcing strength pre-
dicted by Eq. �7�. For all data, A=3 and hence the critical wave
number qc and Hopf frequency �H are as in Fig. 3. For each data
set, �=−Re � in Eq. �2�. ��� B=9.98, D�1.935 for which
�=0.01. ��� B=9.94, D�1.955 for which �=0.03. ��� B=9.8,
D�2.031 for which �=0.1.

FIG. 5. Dependence of Turing pattern enhancement ET on fre-
quency detuning � for Brusselator �15� with forcing
f�t�=F cos���H+��t�. �a� The three sets of data correspond �same
symbols� to the parameters in Fig. 4, except for the values of F. ���
F=0.001. ��� F=0.003. ��� F=0.01. The lines guide the eyes. As
predicted by Eq. �7�, there is a �opt for which is effect is maximal
and �opt→0 close to the codimension-two point. �b� Same data as
� in �a�, but here the solid curve is a fit of the functional form
c1 / �c2+ ��−c3�2� predicted by Eq. �7�.
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�t → �t + �2�t2
,

�a,b,c,d,K� = �a,b,c,d,K�c + �2�a,b,c,d,K�2, �A2a�

f1,2�t� → �3f1,2�t� ,

u = �u1 + �2u2 + �3u3, �A2b�

where �	1 is a bookkeeping parameter, the subscript of c
indicates critical values as determined by Eq. �11�, and u j
= �uj ,v j�T.

At O���, the linear problem is recovered. The solution
u1 is

�u1

v1
	 = zT�t2��u1T

v1T
	eiqcx + zH�t2��u1H

v1H
	ei�Ht + c.c.,

�A3�

where vT= �u1T ,v1T�T, vH= �u1H ,v1H�T, and qc and �H are de-
fined by Eqs. �12� and �13�. Without loss of generality, we
have assumed that the critical Turing wave vector is in the x
direction.

The O��2� problem is

�tu2 = L0u2 + N2�u1� where N2�u1� = �F2�u1,v1�
G2�u1,v1�

	 .

�A4�

The operator L0 is simply L�qc� with L given by Eq. �10�.
Write the nonlinear terms as

N2�u1� = 
j=1

2

Q2,jz2,j + 
i=3

6

�Q2,jz2,j + c.c.� , �A5�

where

Q2,1 = �2q11u1T
2 + 2q12u1Tv1T + 2q13v1T

2

2q21u1T
2 + 2q22u1Tv1T + 2q23v1T

2 	 , �A6a�

Q2,2 = �2q11�u1H�2 + q12�u1Hv̄1H + ū1Hv1H� + 2q13�v1H�2

2q21�u1H�2 + q22�u1Hv̄1H + ū1Hv1H� + 2q23�v1H�2
	 ,

�A6b�

Q2,3 = �2q11u1Tu1H + q12�u1Tv1H + v1Tu1H� + 2q13v1Tv1H

2q21u1Tu1H + q22�u1Tv1H + v1Tu1H� + 2q23v1Tv1H
	 ,

�A6c�

Q2,4 = �2q11u1Tū1H + q12�u1Tv̄1H + v1Tū1H� + 2q13v1Tv̄1H

2q21u1Tū1H + q22�u1Tv̄1H + v1Tū1H� + 2q23v1Tv̄1H
	 ,

�A6d�

Q2,5 = �q11u1T
2 + q12u1Tv1T + q13v1T

2

q21u1T
2 + q22u1Tv1T + q23v1T

2 	 , �A6e�

Q2,6 = �q11u1H
2 + q12u1Hv1H + q13v1H

2

q21u1H
2 + q22u1Hv1H + q23v1H

2 	 , �A6f�

and

z2,1 = �zT�2, z2,2 = �zH�2, z2,3 = zTzHeiqcx+i�Ht, �A7a�

z2,4 = zTz̄Heiqcx−i�Ht, z2,5 = zT
2e2iqcx, z2,6 = zH

2 e2i�Ht.

�A7b�

Then make the ansatz

u2 = 
j=1

2

u2,jz2,j + 
j=3

6

�u2,jz2,j + c.c.� . �A8�

By substitution of Eq. �A8� into Eq. �A4�, the u2,j satisfy

u2,1 = −
1

�H
2 � d − b

− c a
	Q2,1, �A9a�

u2,2 = −
1

�H
2 � d − b

− c a
	Q2,2, �A9b�

u2,3 =
1

�H
2 − i�Hqc

2�K + 1�
�d − Kqc

2 − i�H − b

− c a − qc
2 − i�H

	Q2,3, �A9c�

u2,4 =
1

�H
2 + i�Hqc

2�K + 1�
�d − Kqc

2 + i�H − b

− c a − qc
2 + i�H

	Q2,4, �A9d�

u2,5 = −
1

9Kqc
4�d − 4Kqc

2 − b

− c a − 4qc
2 	Q2,5, �A9e� u2,6 =

1

3�H
2 �d − 2i�h − b

− c a − 2i�h
	Q2,6. �A9f�
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The O��3� problem is

�tu3 − L0u3 = − �t2
u1 + L2u1 + N3�u1,u2� + f ,

L2 = �a2 b2

c2 d2 + K2�
2 	, f = �f1, f2�T, �A10a�

N3�u1,u2� =�
�F2�u1,v1�

�u1

�G2�u1,v1�
�u1

�u2 +�
�F2�u1,v1�

�v1

�G2�u1,v1�
�v1

�v2

+ �F3�u1,v1�
G3�u1,v1�

	 . �A10b�

There are terms in Eq. �A10� with Fourier dependence eiqx

and ei�Ht for which the operator �t−L0 is not invertible. In
order to eliminate the secular terms, use the Fredholm alter-
native theorem. The critical left eigenvectors are ũ1Te−iqcx

and ũ1He−i�Ht where

ũ1T = �cc,− ac + qc
2�, ũ1H = �cc,− ac + i�H� . �A11�

Take an inner product of Eq. �A10a� with each in order to
obtain the two amplitude equations

�T
dzT

dt2
= �TzT + g1T�zT�2zT + g2T�zH�2zT, �A12a�

�H
dzH

dt2
= F + �HzH + g1H�zH�2zH + g2H�zT�2zH.

�A12b�

The coefficients are given by

�T = ũ1Tu1T, �A13a�

�T = ũ1TL2u1T, �A13b�

g1T = ũ1T��N2�u1T,v1T�u2,1 + �N2�ū1T, v̄1T�u2,5

+ 3�1�u1T,v1T�� , �A13c�

g2T = ũ1T��N2�u1T,v1T�u2,2 + �N2�u1H,v1H�u2,4

+ �N2�ū1H, v̄1H�u2,3 + �2�u1H,v1H�u1T� , �A13d�

�H = ũ1Hu1H, �A13e�

F =
�H

2�
�

0

2�/�H

ũ1Hfdt , �A13f�

�H = ũ1HL2u1H, �A13g�

g1H = ũ1H��N2�u1H,v1H�u2,2 + �N2�ū1H, v̄1H�u2,6

+ 3�1�u1H,v1H�� , �A13h�

g2H = ũ1H��N2�u1H,v1H�u2,1 + �N2�u1T,v1T�ū2,4

+ �N2�ū1T, v̄1T�u2,3 + �2�u1T,v1T�u1H� , �A13i�

where

�N2�u,v� =�
�F2�u,v�

�u

�F2�u,v�
�v

�G2�u,v�
�u

�F2�u,v�
�v

� , �A14a�

�1�u,v� = �u2�c11ū + c12v̄� + v2�c13ū + c14v̄�
u2�c21ū + c22v̄� + v2�c23ū + c24v̄�

	 ,

�A14b�

�2�u,v� = �6c11�u�2 + 2c12�ūv + uv̄� + 2c13�v�2 2c12�u�2 + 2c13�ūv + uv̄� + 6c14�v�2

6c21�u�2 + 2c22�ūv + uv̄� + 2c23�v�2 2c22�u�2 + 2c23�ūv + uv̄� + 6c24�v�2
	 . �A14c�

Rescaling Eq. �A12� leads to normal form �2� that we study.
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